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New classes of Schr̈odinger equations equivalent to the free
particle equation through non-local transformations

George Bluman and Vladimir Shtelen
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z2

Received 22 August 1995, in final form 21 March 1996

Abstract. We introduce new classes of Schrödinger equations with time-dependent potentials
which are transformable to the free particle equation through non-local transformations. These
non-local transformations arise when considering the potential systems of the Schrödinger
equation. Explicit formulae are given for the potentials and the corresponding solutions related
to the solutions of the free particle equation.

1. Introduction

In this paper we extend previous work on finding Schrödinger equations which can be
mapped into the free particle equation. Niederer (1973) showed that the Lie group of
point transformations admitted by the Schrödinger equation for the harmonic oscillator
is isomorphic to the Lie group of point transformations admitted by the free particle
equation and exhibited a point transformation which related the solutions of these equations.
Boyer (1974) extended Niederer’s work to show that a Schrödinger equation with a time-
independent potential can be mapped by a point transformation into the free particle equation
if and only if the potential is a quadratic polynomial. Bluman (1980, 1983) extended Boyer’s
work to time-dependent potentials by essentially showing that such Schrödinger equations
can be mapped by point transformations to the free particle equation if and only if the
potential is a quadratic polynomial with arbitrary time-dependent coefficients.

In the present paper we enlarge the previously known class of Schrödinger equations
with time-dependent potentials which can be mapped into the free particle equation through
the use of non-local transformations. We accomplish this by embedding a given Schrödinger
equation in an auxiliary system of partial differential equations (PDEs) so that the set of all
solutions of the auxiliary system yields all solutions of the given Schrödinger equation but
there is not a one-to-one correspondence between the solutions of the given Schrödinger
equation and those of related auxiliary systems. Such auxiliary systems of PDEs are
‘potential’ systems obtained through replacement of the given Schrödinger equation by
equivalent conservation laws yielded by factors which are arbitrary solutions of the complex
conjugate equation of the given Schrödinger equation (Bluman and Doran-Wu 1995). A
point transformation of the variables of such a potential system, which maps the potential
system to the corresponding potential system for a free particle equation, could yield a
non-local transformation which maps the given Schrödinger equation to the free particle
equation.

We find the most general class of time-dependent potentials for which point
transformations map the corresponding potential systems into the free particle system. Such
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point transformations will include transformations which induce non-local transformations
of the given Schr̈odinger equation. Consequently we obtain new classes of time-dependent
potentials (and corresponding mappings of solutions) for which the Schrödinger equation
can be mapped into the free particle equation. Our non-local transformations reduce to the
known point transformations if and only if the potential is quadratic.

Our mapping formulae can be recycled to further enlarge the classes of Schrödinger
equations which can be mapped into the free particle equation. The approach presented
in this paper can be extended to other mapping problems. For example, new classes of
diffusion equations transformable to the heat equation by non-local transformations are
found in Bluman and Shtelen (1996).

2. The basic framework

Consider the Schrödinger equation

i
∂u1

∂t
+ ∂2u1

∂x2
− V1(x, t)u1 = 0 (2.1)

whereu1(x, t) is a complex-valued function of the real variables(x, t) and V1(x, t) is a
real potential.

The most general point transformation of the form

τ = T (x, t, u1) y = Y (x, t, u1) u2 = F(x, t, u1) (2.2)

which maps (2.1) into an equivalent equation of the same form, namely,

i
∂u2

∂τ
+ ∂2u2

∂y2
− V2(y, τ )u2 = 0 (2.3)

is given by

y = σ(t)x + ρ(t) τ =
∫ t

σ 2(µ) dµ

u2 = exp

[
i

(
σ̇

4σ
x2 + ρ̇

2σ
x + λ(t)

)]
u1 (2.4)

with

V2(y, τ ) = 1

σ 2

[
V1(x, t) +

(
2σ̇ 2 − σ σ̈

4σ 2

)
x2 +

(
2σ̇ ρ̇ − σ ρ̈

2σ 2

)
x +

(
iσ̇

2σ
+ ρ̇2

4σ 2
− λ̇

)]
(2.5)

whereσ(t), ρ(t), λ(t) are arbitrary functions oft and σ̇ = dσ/dt , etc. Consequently, with
respect to point transformations, (2.1) is equivalent to the free particle equation if and only
if

V1(x, t) = α(t)x2 + β(t)x + γ (t) (2.6)

for arbitraryα(t), β(t) andγ (t).
Given a linear operatorL, its adjointL∗ is defined by

8Lu − uL∗8 =
n∑

i=1

Dif
i

wherex = (x1, x2, . . . , xn), the total derivative operatorsDi = ∂/∂xi , i = 1, 2, . . . , n, and
{f i} are bilinear expressions inu, 8 and their derivatives. Consequently, if

L∗8 = 0 (2.7)
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thenLu = 0 if and only if
∑n

i=1 Dif
i = 0, i.e. a given linear partial differential equation

Lu = 0 (2.8)

is equivalent to the conservation law
n∑

i=1

Dif
i = 0 (2.9)

for any 8 satisfying its adjoint equation (2.7).
We now specialize to the case when (2.8) is the Schrödinger equation (2.1). Here the

linear operator is

L = i
∂

∂t
+ ∂2

∂x2
− V1(x, t) (2.10)

its adjoint is given by

L∗ = −i
∂

∂t
+ ∂2

∂x2
− V1(x, t) (2.11)

and (2.9) becomes

∂

∂t
(i8u1) + ∂

∂x

(
8

∂u1

∂x
− ∂8

∂x
u1

)
= 0. (2.12)

The potential system corresponding to (2.12) is given by

∂v1

∂x
= i8u1 (2.13a)

∂v1

∂t
= ∂8

∂x
u1 − 8

∂u1

∂x
(2.13b)

where8(x, t) is a solution of

L∗8 = −i
∂8

∂t
+ ∂28

∂x2
− V1(x, t)8 = 0. (2.14)

One observes that equation (2.14) is the complex conjugate of equation (2.1) if the potential
V1(x, t) is real.

Note that if(u1(x, t), v1(x, t), 8(x, t)) solves (2.13) and (2.14) thenu1(x, t) solves the
Schr̈odinger equation (2.1) andv1(x, t) solves

i
∂v1

∂t
+ ∂2v1

∂x2
− 2

8

∂8

∂x

∂v1

∂x
= 0. (2.15)

If u1(x, t) solves (2.1) and8(x, t) solves (2.14), then one can findv1(x, t) solving (2.13),
i.e. for any8(x, t) satisfying (2.14), equations (2.1) and (2.15) are equivalent through the
non-local transformation defined by (2.13).

For any8(x, t) satisfying (2.14), the point transformation

w = v1

8
(2.16)

maps (2.15) to

i
∂w

∂t
+ ∂2w

∂x2
− V2(x, t)w = 0 (2.17)

where the new potentialV2(x, t) is given by

V2(x, t) = V1(x, t) − 2
∂2

∂x2
log8. (2.18)
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Equation (2.18) is known to connect the Schrödinger equation and the nonlinear KdV
equation. In particular ifV1(x, t) is a solution of the KdV equation and9(x, t) = 1/8(x, t)

solves the time-independent Schrödinger equation with potentialV1(x, t), with t treated as
a parameter, thenV2(x, t) also solves the KdV equation (see Doddet al 1982, ch 3, and
references therein).

From equations (2.13) and (2.16) it follows immediately that ifu1(x, t) solves (2.1)
then

w = u2(x, t) = i

8(x, t)

[ ∫ x

k

u1(ξ, t)8(ξ, t) dξ + B2(t)

]
(2.19a)

with B2(t) satisfying the condition

dB2

dt
= i

[
∂8

∂x
(k, t)u1(k, t) − 8(k, t)

∂u1

∂x
(k, t)

]
(2.19b)

for any constantk, solves the Schrödinger equation (2.17). (Note that if both8(x, t) and
u1(x, t) satisfy the same homogeneous boundary condition atx = k = k∗, then B2 = 0
satisfies condition (2.19b). Moreover, it is easy to see that if8(k∗, t) = u1(k

∗, t) = 0,
then u2(k

∗, t) = 0.) Conversely, ifw(x, t) solves (2.17) andφ = log8 is any particular
solution of

i
∂φ

∂t
+ ∂2φ

∂x2
−

(
∂φ

∂x

)2

= −V2(x, t) (2.20)

then solving (2.14) in terms ofV1(x, t), i.e. setting

V1(x, t) = −i
∂φ

∂t
+ ∂2φ

∂x2
+

(
∂φ

∂x

)2

(2.21)

it follows that

u1 = −i

(
∂w

∂x
+ w

φ

∂φ

∂x

)
(2.22)

solves (1.1). Note that correspondingly8 = eφ is a particular solution of (2.14).

3. Mapping of potential systems to free particle systems

By direct calculation one can prove the following theorem.

Theorem 1. Consider the Schrödinger equation (2.1). A point transformation maps a
corresponding auxiliary potential system (2.13) into the free particle system

∂v̂

∂y
= iû

∂v̂

∂τ
= −∂û

∂y
(3.1)

for which each component(û(y, τ ), v̂(y, τ )) satisfies the free particle equation if and only
if the corresponding potentialV1(x, t) is of the form

V1(x, t) = i∂9/∂t − ∂29/∂x2

9
+ 2

(
∂9/∂x

9

)2

= α̂(t)x2 + β̂(t)x + γ̂ (t) − 2
∂2

∂x2
log9

(3.2)

for arbitrary α̂(t), β̂(t), γ̂ (t), with 9(x, t) satisfying

i
∂9

∂t
+ ∂29

∂x2
= [α̂(t)x2 + β̂(t)x + γ̂ (t)]9. (3.3)
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(Note that9(x, t) satisfies (3.3) for any solution8(x, t) = 1/9(x, t) of the corresponding
adjoint equation of (3.3), which is the Schrödinger equation (2.14) with potentialα̂(t)x2 +
β̂(t)x + γ̂ (t).)

The corresponding mapping of system (2.13) to the free particle system (3.1) is given
by

y = σ(t)x + ρ(t) τ =
∫ t

σ 2(µ) dµ

û = 1

σ
eig(x,t)

[
u1 +

{(
σ̇ x + ρ̇

2σ

)
− i

∂9/∂x

9

}
9v1

]
v̂ = eig(x,t)9v1 (3.4)

where

g(x, t) = σ̇

4σ
x2 + ρ̇

2σ
x + λ(t) (3.5)

and (σ (t), ρ(t), λ(t)) are related to(α̂(t), β̂(t), γ̂ (t)) through the system of ordinary
differential equations (ODEs)

α̂(t) = σ σ̈ − 2σ̇ 2

4σ 2
β̂(t) = σ ρ̈ − 2ρ̇σ̇

2σ 2
γ̂ (t) = λ̇ − i

σ̇

2σ
− ρ̇2

4σ 2
. (3.6)

The transformationS(t) = 1/σ(t) reduces the nonlinear system of ODEs (3.6) to a
linear system. For details see the appendix in Bluman and Shtelen (1996).

Note that from (2.4) and (2.5) one can see that the point transformation

y = σ(t)x + ρ(t) τ =
∫ t

σ 2(µ) dµ 9̂ = eig(x,t)9 (3.7)

maps equation (3.3) to the free particle equation

i
∂9̂

∂τ
+ ∂29̂

∂y2
= 0 (3.8)

whereg(x, t) is given by (3.5).
The previously known result concerning the equivalence under point transformations of

Schr̈odinger equations with quadratic potentials (2.6) to a free particle equation immediately
follows as a special case of theorem 1.

If

1

9

∂9

∂x
= i

[
σ̇ x + ρ̇

2σ

]
then the non-local transformation (3.4) acting on (x, t, u)-space becomes apoint
transformationacting on(x, t, u)-space. Here equations (3.2) and (3.3) yieldV1(x, t) =
α̂(t)x2+β̂(t)x+γ̂ (t)−iσ̇ /σ , whereα̂(t), β̂(t), γ̂ (t) are given by (3.6). Then the substitution
σ û → u2 yields the point transformation mapping (2.1) to (2.3) withV2(y, τ ) ≡ 0.

It is easy to see that the mapping (3.4) yields anon-local transformationof (2.1) to the
free particle equation if and only if∂3/∂x3(log9) 6≡ 0. Moreover, the resulting potential
V1(x, t) is not of the quadratic form (2.6) if and only if

∂5

∂x5
(log9) 6≡ 0. (3.9)
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3.1. New potentialsV1(x, t)

In general a solution9(x, t) of (3.3) leads to a complex potentialV1(x, t) defined by (3.2).
We must seek solutions(9(x, t), α̂(t), β̂(t), γ̂ (t)) of (3.3) so thatV1(x, t) defined by (3.2)
is a real function, and condition (3.9) is satisfied. Consequently it is obvious thatα̂(t) and
β̂(t) must be real but̂γ (t) can be complex. Let

γ̂ (t) = m(t) + ic(t) (3.10)

9(x, t) = A(x, t) eiϕ(x,t) (3.11)

wherem(t), c(t), A(x, t) andϕ(x, t) are real functions. IfV1(x, t) defined by (3.2) is real
then it is necessary that 2∂2ϕ/∂x2 = c(t), and hence

ϕ(x, t) = 1
4c(t)x2 + d(t)x + e(t) (3.12)

for some undetermined functionsc(t), d(t) ande(t). Thus

V1(x, t) = α̂(t)x2 + β̂(t)x + m(t) − 2
∂2

∂x2
logA(x, t). (3.13)

Now condition (3.9) becomes

∂5

∂x5
logA 6≡ 0. (3.14)

After equating the real and imaginary parts of both sides of equation (3.3), we find that
∂A

∂t
+ (cx + 2d)

∂A

∂x
= 1

2cA (3.15)

∂2A

∂x2
= [( 1

2cx + d)2 + 1
4 ċx2 + ḋx + ė + α̂x2 + β̂x + m]A. (3.16)

From equation (3.15) we see thatA(x, t) is of the form

A(x, t) = f (t)G(z) (3.17)

with

z = r(t)x + s(t) (3.18)

for some functionsf (t), r(t) and s(t). After substituting (3.17) into (3.15) and then into
(3.16), we find that

([ṙ + cr]x + ṡ + 2dr)f G′ = ( 1
2cf − ḟ )G (3.19)

r2G′′ = ([ 1
2cx + d]2 + 1

4 ċx2 + ḋx + ė + α̂x2 + β̂x + m)G (3.20)

whereG′ = dG/dz, G′′ = d2G/dz2.
One can show that condition (3.14) and the compatibility conditions arising from

equations (3.18)–(3.20), lead toG(z) satisfying the differential equation

G′′ = (Mz2 + Nz + P)G (3.21)

whereM, N and P can be arbitrary constants, and after settingk̂ = α̂ − Mr4, ˆ̀ = β̂ −
r3(2Ms+N) andm̂ = m−r2(P +Ns+Ms2), one finds that{c(t), d(t), e(t), f (t), r(t), s(t)}
satisfies the system of first-order differential equations

ċ + c2 = −4k̂ (3.22a)

ḋ + cd = − ˆ̀ (3.22b)

ė = −m̂ − d2 (3.22c)

ḟ − 1
2cf = 0 (3.22d)

ṙ + cr = 0 (3.22e)

ṡ = −2dr. (3.22f)
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Inspecting equations (3.22a–f ), we see that two cases arise.

Case I: c(t) 6≡ 0. Here α̂(t), β̂(t) and m(t) can be arbitrary functions. Oncec(t) is
determined from (3.22a), then (3.22b–f ) are linear differential equations and, in principle,
can be solved in closed form. The Riccati transformationc = Ċ/C transforms (3.22a) to

C̈ + 4k̂C = 0. (3.23)

The general solution of (3.23) leads to the general solution of (3.22a–f ) in closed form.

Case II: c(t) ≡ 0. Here β̂(t) and m(t) can be arbitrary functions, but noŵα is
restricted to being an arbitrary constant,α̂ = α̂0. In this case, without loss of generality,
equations (3.22a–f ) reduce to

r = 1 f = 1 s̈ + 4α̂0s = 2(β̂(t) − N)

d = − 1
2 ṡ ė = −m(t) + P + Ns + α̂0s

2 − 1
4 ṡ2. (3.24)

Here the constantM = α̂0 in differential equation (3.21).
In both cases the determination ofc(t), d(t) and e(t) leads to the argumentϕ(x, t)

defined by equation (3.12); the determination off (t), r(t) and s(t) leads toA(x, t) given
by equation (3.17) withG(z) as any solution of the differential equation (3.21). Almost
all solutions of (3.21) lead toA(x, t) satisfying condition (3.14). Consequently, real, non-
quadratic potentialsV1(x, t) are obtained for which non-local transformations connect the
free particle equation to the Schrödinger equation (2.1).

3.2. Examples of new potentialsV1(x, t)

As examples of new potentialsV1(x, t) for which the Schr̈odinger equation (2.1) can
be mapped into the free particle equation through our procedure, supposec(t) = 0,
α̂(t) = α̂0 = M = N = 0, P = 1.

Here the solution of equations (3.21) and (3.24) leads to the class of time-dependent
potentials

V1(x, t) = β̂(t)x + m(t) − 2 sech2 z (3.25)

whereβ̂(t) andm(t) are arbitrary functions, and

z = x + ρ(t) (3.26)

with

ρ(t) = 2
∫ t

dt2

∫ t2

β̂(t1) dt1. (3.27)

A corresponding mapping (3.4) of the Schrödinger equation (2.1) to the free particle equation
has

y = x + ρ(t) τ = t

g(x, t) =
[ ∫ t

β̂(t1) dt1

]
x +

∫ t
[
m(t2) +

[ ∫ t2

β̂(t1) dt1

]2]
dt2,

σ = 1
ρ̇

2σ
=

∫ t

β̂(t1) dt1

9(x, t) = coshz exp(i[ t − g(x, t)]) (3.28)

with potentialV1(x, t) given by (3.25) andρ(t) given by (3.27).
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Note thatV1(x, t) has no singularities ifβ̂(t) and m(t) are finite in t . Moreover, as
x → ±∞,

V1(x, t) ∼ β̂(t)x + m(t). (3.29)

When β̂(t) = m(t) = 0, thenρ(t) = 0, and

V1(x, t) = −2 sech2 x (3.30)

which is a reflectionless time-independent potential discussed in section 2.4 of Doddet al
(1982).

4. Concluding remarks

The results presented in section 3 can be recycled to obtain further sets of Schrödinger
equations with time-dependent potentials which can be transformed to the free particle
equation by non-local transformations. Here the potentialsV1(x, t) are given by
equation (3.13) and the mapping formulae (3.4)–(3.7) relate the corresponding Schrödinger
equations (2.1) to the free particle equation. Then (2.18) yieldsV2(x, t) with 81(x, t) =
8(x, t) defined by (2.14). In general, the factor8(x, t) = 8n(x, t) satisfies (2.14),
w = un(x, t) satisfies (2.17) and potentialVn+1(x, t) is related to potentialVn(x, t) through
the corresponding generalization of (2.18),n = 1, 2, . . .. The mapping formulae (3.4)–(3.7)
are recycled accordingly. However, in general, the potentialsVn(x, t) are complex for
n > 2. One can show that for potentialsV2(x, t) to be real, it is necessary that potentials
V1(x, t) be restricted to those obtained from case II withc(t) = 0.

When the potentialV1(x, t) is time-independent, i.e.V1(x, t) ≡ V1(x), one can show that
the results obtained in the present paper can be deduced from the work exhibited in Bluman
and Reid (1989) which is related to the factorization method introduced in the celebrated
paper by Infeld and Hull (1951). In this case the recycling procedure always yields real
time-independent potentialsVn(x; α1, α1, . . . , α2n−2) depending on 2n−2 arbitrary constants
α1, α2, . . . , α2n−2.

For a complete discussion of the recycling procedure as it applies to mapping diffusion
equations to the heat equation, see Bluman and Shtelen (1996).
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