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Abstract. We introduce new classes of SéHdinger equations with time-dependent potentials
which are transformable to the free particle equation through non-local transformations. These
non-local transformations arise when considering the potential systems of thedBger
equation. Explicit formulae are given for the potentials and the corresponding solutions related
to the solutions of the free particle equation.

1. Introduction

In this paper we extend previous work on finding Schinger equations which can be
mapped into the free particle equation. Niederer (1973) showed that the Lie group of
point transformations admitted by the Satiinger equation for the harmonic oscillator
is isomorphic to the Lie group of point transformations admitted by the free particle
equation and exhibited a point transformation which related the solutions of these equations.
Boyer (1974) extended Niederer's work to show that a 8dimger equation with a time-
independent potential can be mapped by a point transformation into the free particle equation
if and only if the potential is a quadratic polynomial. Bluman (1980, 1983) extended Boyer’s
work to time-dependent potentials by essentially showing that sucto@olger equations
can be mapped by point transformations to the free particle equation if and only if the
potential is a quadratic polynomial with arbitrary time-dependent coefficients.

In the present paper we enlarge the previously known class ob8iciger equations
with time-dependent potentials which can be mapped into the free particle equation through
the use of non-local transformations. We accomplish this by embedding a giveidBder
equation in an auxiliary system of partial differential equations (PDES) so that the set of all
solutions of the auxiliary system yields all solutions of the given 8dimger equation but
there is not a one-to-one correspondence between the solutions of the givédliSgér
equation and those of related auxiliary systems. Such auxiliary systems of PDEs are
‘potential’ systems obtained through replacement of the givend@ahger equation by
equivalent conservation laws yielded by factors which are arbitrary solutions of the complex
conjugate equation of the given Sédinger equation (Bluman and Doran-Wu 1995). A
point transformation of the variables of such a potential system, which maps the potential
system to the corresponding potential system for a free particle equation, could yield a
non-local transformation which maps the given Scdlinger equation to the free particle
equation.

We find the most general class of time-dependent potentials for which point
transformations map the corresponding potential systems into the free particle system. Such
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point transformations will include transformations which induce non-local transformations
of the given Schidinger equation. Consequently we obtain new classes of time-dependent
potentials (and corresponding mappings of solutions) for which thed8tiger equation

can be mapped into the free particle equation. Our non-local transformations reduce to the
known point transformations if and only if the potential is quadratic.

Our mapping formulae can be recycled to further enlarge the classes did8aler
equations which can be mapped into the free particle equation. The approach presented
in this paper can be extended to other mapping problems. For example, new classes of
diffusion equations transformable to the heat equation by non-local transformations are
found in Bluman and Shtelen (1996).

2. The basic framework

Consider the Scldinger equation

.8%1 82u1
i— 4+ —— — Vi(x,Hu1 =0 2.1
ar T a2 1(x, Duy (2.1)
whereui(x, t) is a complex-valued function of the real variablgs ) and Vi(x,t) is a
real potential.

The most general point transformation of the form
T=T(x,t,u1) y="Y(x,t,u) up = F(x,t,u1) (2.2)

which maps (2.1) into an equivalent equation of the same form, namely,

.auz 82u2
|377: + 87)12 —Va(y, Duz =0 (2.3)
is given by
t
y=o)x+p) T =/ o®(w) du
Uy = exp[i (;xz + %x + A(t))] ug (2.4)
with

1 262 — 06 26p—0p io a .
Va(y, 1) = = |:V1(x, 1+ (462) X%+ ('(;02'0>x + (20 + % - A>i| (2.5)

whereo (1), p(t), A(¢) are arbitrary functions of andé = do/dr, etc. Consequently, with
respect to point transformations, (2.1) is equivalent to the free particle equation if and only
if

Vi(x, 1) = a(t)x® + B(t)x + y (1) (2.6)
for arbitrarya(¢), B(¢) andy (¢).

Given a linear operatof, its adjoint£* is defined by
SLu —ul*d = ZDifi
i=1

wherex = (x1, x2, ..., X,), the total derivative operato®; = 9/dx;,i =1,2,...,n, and
{f'} are bilinear expressions in, ® and their derivatives. Consequently, if

L'd=0 (2.7)
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thenLu =0 if and only if Y| D; f* = 0, i.e. a given linear partial differential equation
Lu=0 (2.8)
is equivalent to the conservation law

> Diff=0 (2.9)
i=1
for any @ satisfying its adjoint equation (2.7).

We now specialize to the case when (2.8) is the 8dimger equation (2.1). Here the
linear operator is

E—ia~|—82 Vi(x, 1) (2.10)
“or ax2 T '

its adjoint is given by

Lr= i8+82 Vi(x, 1) (2.11)

T Tax2 HT '

and (2.9) becomes

0 . 0 ouq 0D

—(® — - — =0. 2.12

ot “1)+ax< ox ax”1> (2.12)
The potential system corresponding to (2.12) is given by

ad

M ou, 2.1%)

ax

ad a9 ad

LA (2.1%)

at dx dx
where® (x, t) is a solution of

A0 %P
LO=——+ —5 —Vi(x,1)®=0. 2.14
ot a2 1(x, 1) (2.14)

One observes that equation (2.14) is the complex conjugate of equation (2.1) if the potential
Vi(x,t) is real.
Note that if (u1(x, t), vi(x, t), ®(x, t)) solves (2.13) and (2.14) then(x, t) solves the
Schibdinger equation (2.1) and (x, ¢t) solves
.8v1 321)1 200 8v1
“or T ox2 T @ ox ox =0 (2.15)
If ui(x,t) solves (2.1) andb(x, t) solves (2.14), then one can find(x, #) solving (2.13),
i.e. for any®(x, r) satisfying (2.14), equations (2.1) and (2.15) are equivalent through the
non-local transformation defined by (2.13).
For any®(x, r) satisfying (2.14), the point transformation

w=2 (2.16)
maps (2.15) to

Aw  %w

— 4+ —Va(x,Hw =0 2.17

P I CCL (2.17)

where the new potentidl,(x, ¢) is given by

2
Vax, 1) = Vax, 1) — 20— log . (2.18)
x2
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Equation (2.18) is known to connect the Sitinger equation and the nonlinear KdV
equation. In particular i¥1(x, t) is a solution of the KdV equation anbl(x, t) = 1/®(x, t)
solves the time-independent Sedinger equation with potentidly (x, #), with ¢ treated as
a parameter, the,(x, t) also solves the KdV equation (see Doedal 1982, ch 3, and
references therein).

From equations (2.13) and (2.16) it follows immediately that4fx, t) solves (2.1)
then

w=usx,t)= ® |:/ ur (€, )®(&, 1) dg + Bz(t)i| (2.1%)
(x, 1) L Jx
with By (t) satisfying the condition
dB, .[d® duy
o i [ax(k, Huq(k,t) — Ok, t)ﬁ(k’ t):| (2.1%)

for any constank, solves the Scliadinger equation (2.17). (Note that if both(x, ) and
ui(x, t) satisfy the same homogeneous boundary condition at k = k*, thenB, = 0
satisfies condition (2.19. Moreover, it is easy to see that @ (k*, 1) = u(k*, 1) = 0O,
thenuy(k*, 1) = 0.) Conversely, ifw(x, r) solves (2.17) ang = log ® is any particular
solution of
99 32¢ [\
9t 0dx2 ox
then solving (2.14) in terms dfy(x, 1), i.e. setting

= —Vo(x,1) (220)

0¢ 0% [(3p\?
=—i— 4 +(-"— 2.21
Vi, =~ + o+ <8x (2.21)
it follows that
(0w w i
I 2.22
= (8x e 8x> (2.22)

solves (1.1). Note that correspondingby= €? is a particular solution of (2.14).

3. Mapping of potential systems to free particle systems

By direct calculation one can prove the following theorem.

Theorem 1. Consider the Sckidinger equation (2.1). A point transformation maps a
corresponding auxiliary potential system (2.13) into the free particle system
an ., a0 ou
— = 1\u =
dy at ay
for which each componenii(y, 1), 9(y, t)) satisfies the free particle equation if and only
if the corresponding potentidl, (x, r) is of the form

(3.1)

2

; a2 2 2 ~
Vi(x,t) = 19 /01 — 97/ 9x +2 <8w/ax> =ax>+ Bx + (1) — 28—2 log ¥
y ' 0x
(3.2
for arbitrary (), (1), 7 (t), with W (x, r) satisfying
2
ik + it = [a(O)x? + B(D)x + P ()] V. (3.3)

I -
ot 9x2
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(Note thatW (x, ¢) satisfies (3.3) for any solutio® (x, r) = 1/ W (x, t) of the corresponding
adjoint equation of (3.3), which is the Sdilinger equation (2.14) with potentials)x? +
Bt)x +7(1).)

The corresponding mapping of system (2.13) to the free particle system (3.1) is given
by

y=0o()x+p(t) T = / o2(w) du

1. ) ) ov /o ;
= —e'g(x*’) [ul + {<0X2+ ,O> —i \IC al } \IJUJC| V= ég(x,t)\pvl (34)
o o
where
glx, 1) = %xz + %x + A1) (3.5

and (o (2), p(t), A(t)) are related to(&(t),B(t),y?(t)) through the system of ordinary
differential equations (ODES)

o206 . . 6 pP
R H=A—i————.
202 e 20 402

N o6 — 262 N
a(t) = T 40?2 B) =

(3.6)
The transformationS(r) = 1/0(t) reduces the nonlinear system of ODEs (3.6) to a
linear system. For details see the appendix in Bluman and Shtelen (1996).
Note that from (2.4) and (2.5) one can see that the point transformation

t .
y=0o(t)x+ p(t) T= / o2(w) du U = sy (3.7
maps equation (3.3) to the free particle equation
A 92
i— 4+ — =0 3.8
Iar + 0y? (3.8)

whereg(x, t) is given by (3.5).

The previously known result concerning the equivalence under point transformations of
Schibdinger equations with quadratic potentials (2.6) to a free particle equation immediately
follows as a special case of theorem 1.

If

19¥  [ox+p
vox [ 20 }

then the non-local transformation (3.4) acting on (x, ¢, u)-space becomes @oint
transformationacting on(x, ¢, u)-space. Here equations (3.2) and (3.3) yi®dx, ) =
a()x2+BM)x+7(1)—ic /o, wherea(t), (1), v (t) are given by (3.6). Then the substitution
ot — uy yields the point transformation mapping (2.1) to (2.3) with(y, t) = 0.

It is easy to see that the mapping (3.4) yieldsoa-local transformatiorof (2.1) to the
free particle equation if and only #3/dx3(log W) # 0. Moreover, the resulting potential
Vi(x, t) is not of the quadratic form (2.6) if and only if

35
ﬁ(log W) 0. (3.9)
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3.1. New potential$/1 (x, 1)

In general a solutiow (x, r) of (3.3) Iegds to a complex potenti#] (x, ¢) defined by (3.2).
We must seek solutiongV (x, 1), a(t), B(t), y(¢)) of (3.3) so thatVy(x, r) defined by (3.2)
is a real function, and condition (3.9) is satisfied. Consequently it is obvioustthaand
B(t) must be real buf (r) can be complex. Let

() = m(t) +ic(t) (3.10)

W(x, 1) = A(x, 1) d?eD (3.11)
wherem(t), c(t), A(x,t) ande(x, t) are real functions. 1Vyi(x, t) defined by (3.2) is real
then it is necessary thav2p/9x? = c(¢), and hence

p(x, 1) = Fe(O)x® + d(t)x + e(t) (3.12)
for some undetermined functions$t), d(r) ande(r). Thus

. 92
Vi(x, 1) = &(0)x®+ B)x +m(r) — 2ﬁ log A(x, 7). (3.13)
X
Now condition (3.9) becomes
35
——logA # 0. (3.14)
9x>
After equating the real and imaginary parts of both sides of equation (3.3), we find that
dA A
o + (cx + 2d)a—x = 5cA (3.15)
82A 1 2 1..2 7 . A2 2
ﬁz[(icx—l-d) + z6x° +dx + e +ax® + px +m]A. (3.16)
From equation (3.15) we see thatx, r) is of the form
Alx,1) = f(1)G(2) (3.17)
with
z=r(t)x +s(t) (3.18)

for some functionsf (z), r(¢) ands(¢). After substituting (3.17) into (3.15) and then into
(3.16), we find that

([ + crlx + 5 + 2dr) fG' = (Gef — )G (3.19)

r2G" = ([%cx +d)? + zllc'x2+dx+é+&x2+,3x+m)G (3.20)
whereG’ = dG/dz, G = d*°G/dz>.

One can show that condition (3.14) and the compatibility conditions arising from

equations (3.18)—(3.20), lead ®(z) satisfying the differential equation

G'=(Mz*+ Nz + P)G (3.21)
where M, N and P can be arbitrary constants, and after setting: @ — Mr?, 0= B —
r3(2Ms+N) andit = m—r2(P+Ns+Ms?), one finds thatc(r), d (1), e(t), (), r(t), s(t)}
satisfies the system of first-order differential equations

¢+ c? = —dk (3.22)
d+cd=—10 (3.22)
é=—m —d? (3.2%)
f—3cf=0 (3.221)
F+cr=0 (3.22)

§ = —2dr. (3.2%)
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Inspecting equations (B2a—f), we see that two cases arise.

Case l:c(t) # 0. Herea(r), 3(t) and m(t) can be arbitrary functions. Oncgr) is
determined from (3.28), then (3.22-f) are linear differential equations and, in principle,
can be solved in closed form. The Riccati transformatiea C/C transforms (3.22) to

C +4kC = 0. (3.23)
The general solution of (3.23) leads to the general solution of &3fJ2n closed form.

Case Il: c(r) = 0. Here ﬁ(z) and m(z) can be arbitrary functions, but no& is
restricted to being an arbitrary constaéit= &p. In this case, without loss of generality,
equations (R2a—f) reduce to

r=1 f=1 § + 4dos = 2(B(t) — N)
d=-1 ¢=—m(t) + P+ Ns + os® — 152 (3.24)

Here the constan = &, in differential equation (3.21).

In both cases the determination oft), d(t) and e(z) leads to the argumeni(x, t)
defined by equation (3.12); the determinationfaf), r(¢) ands(z) leads toA(x, ¢) given
by equation (3.17) withG(z) as any solution of the differential equation (3.21). Almost
all solutions of (3.21) lead ta\ (x, ¢) satisfying condition (3.14). Consequently, real, non-
guadratic potentiald/;1(x, t) are obtained for which non-local transformations connect the
free particle equation to the Sédinger equation (2.1).

3.2. Examples of new potentials (x, )

As examples of new potential®;(x, ) for which the Schidinger equation (2.1) can
be mapped into the free particle equation through our procedure, suppgse= O,
at)=a=M=N=0,P=1.

Here the solution of equations (3.21) and (3.24) leads to the class of time-dependent
potentials

Va(x, 1) = B(t)x +m(r) — 2sechz (3.25)
whereA(t) andm(r) are arbitrary functions, and

z=x+p@) (3.26)
with

p(t) =2 / dr, f B(t1) dry. (3.27)

A corresponding mapping (3.4) of the Sotinger equation (2.1) to the free particle equation
has

y=x-+p(t) T=t

t t 2 2
glx, 1) = [/ B(t) dfl]x+/ [m(tz)-i- [f B(t) dt1i| }dtz,

o=t L= [huwam
20
W (x, 1) = coshz exp(i[t — g(x, 1)]) (3.28)
with potential V1(x, t) given by (3.25) ancg(¢) given by (3.27).
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Note thatVi(x, #) has no singularities iﬁ(z) andm(t) are finite inz. Moreover, as
x — o0,

Vilx, 1) ~ B(t)x + m(t). (3.29)
When B(t) = m(t) = 0, thenp(t) = 0, and
Vi(x,1) = —2secBx (3.30)

which is a reflectionless time-independent potential discussed in section 2.4 ofdbatid
(1982).

4. Concluding remarks

The results presented in section 3 can be recycled to obtain further sets otliager
equations with time-dependent potentials which can be transformed to the free particle
equation by non-local transformations. Here the potentigjéx,s) are given by
equation (3.13) and the mapping formulae (3.4)—(3.7) relate the correspondirigliagler
equations (2.1) to the free particle equation. Then (2.18) yi&lds, 1) with ®1(x,t) =
®(x,t) defined by (2.14). In general, the factdr(x,7) = &,(x,t) satisfies (2.14),
w = u,(x,t) satisfies (2.17) and potenti&,, 1 (x, 7) is related to potentiaV, (x, r) through
the corresponding generalization of (2.18)%= 1, 2, . ... The mapping formulae (3.4)—(3.7)
are recycled accordingly. However, in general, the potenfigls, r) are complex for
n > 2. One can show that for potentials(x, ¢) to be real, it is necessary that potentials
Vi(x, t) be restricted to those obtained from case Il with) = 0.

When the potentiaVy (x, ¢) is time-independent, i.6/1(x, t) = V1(x), one can show that
the results obtained in the present paper can be deduced from the work exhibited in Bluman
and Reid (1989) which is related to the factorization method introduced in the celebrated
paper by Infeld and Hull (1951). In this case the recycling procedure always yields real
time-independent potential, (x; a1, a1, .. ., az,_2) depending on2—2 arbitrary constants
a1, 02, ...,02,_2.

For a complete discussion of the recycling procedure as it applies to mapping diffusion
equations to the heat equation, see Bluman and Shtelen (1996).
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